Roof to Wall

Strong-Drive® SDWC TRUSS Screw
Allowable Roof-to-Wall Connection Loads – DFL, SP, SPF, HF1-8

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Minor Diameter (in.)</th>
<th>Length (in.)</th>
<th>Thread Length (in.)</th>
<th>Allowable Loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDWC15600</td>
<td>0.152</td>
<td>6</td>
<td>5¼</td>
<td></td>
</tr>
</tbody>
</table>

1. Loads have been increased for wind and earthquake (C D = 1.6); no further increases allowed. Reduce when other loads govern.
2. Allowable loads are for a Strong-Drive® SDWC Truss screw installed per the “Recommended” or “Optional” installation instructions. The Strong-Drive SDWC Truss screw is to be installed through a double 2x top plate into a minimum 2x4 truss or rafter.
3. A Strong-Drive SDWC Truss screw may be used in each ply of 2- or 3-ply rafters or trusses. The allowable uplift load for each screw shall be multiplied by 0.90, but may be limited by the capacity of the plate or the connection between the top plate to the framing below. Strong-Drive SDWC Truss screws in multi-ply assemblies must be spaced a minimum of 1½” o.c.
4. Screws are shown installed on the interior side of the wall. Installations on the exterior side of the wall are acceptable when the rafter or truss overhangs the top plates a minimum of 3½”.
5. For Uplift Continuous Load Path, top-plate-to-stud connectors such as the H2.5A, TSP or MTS12 must be located on the same side of the wall as the screw.
6. When the screw is loaded simultaneously in more than one direction, the allowable load must be evaluated using the following unity equation: (Design Uplift ÷ Allowable Uplift) + (Design F1 ÷ Allowable F1) + (Design F2 ÷ Allowable F2) ≤ 1.0.
7. Table loads do not apply to trusses with end-grain bearing.
8. Top plate, stud and top-plate splice fastened per applicable Building Code.

Typical Roof-to-Wall Connection

Optional Roof-to-Wall Connection
1. Loads have been increased for wind and earthquake loading ($C_D = 1.6$) with no further increase allowed; reduce where other loads govern.

2. For Uplift Connection Load Path, the Designer shall verify complete continuity of the uplift load path.

3. When cross-grain tension cannot be avoided, supplemental reinforcement shall be considered by the Designer.

4. The SDWC screws shall not interfere with other fasteners or truss plates. Where truss plates must be penetrated for Configuration D, a truss Designer approval is required in accordance with ANSI/TPi-1-2007/2014, Section 7.5.3.4 and 8.9.2. To predrill through truss plate, use a $\frac{1}{8}$" drill bit.

5. The metal installation guide provided with the screw is angled at 22.5° and can be used for Configurations C & D; proper installation angles for all configurations are the responsibility of the installer.

6. SDWC screws must be offset minimum $\frac{1}{4}$" from top plate splices for full values.

7. Loads assume minimum overhang of $3\frac{1}{2}$".

Model No. Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Minor Diameter (in.)</th>
<th>Length (in.)</th>
<th>Thread Length (in.)</th>
<th>Quantity Required</th>
<th>Allowable Uplift Loads (lb.)</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDWC15600</td>
<td>0.152</td>
<td>6</td>
<td>5¼</td>
<td>2</td>
<td>1,200, 1,045</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,195, 1,195</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>905, 850</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,115, 960</td>
<td>D</td>
</tr>
</tbody>
</table>

© 2016 SIMPSON STRONG-TIE COMPANY INC. F-C-HWRCAG16

High Wind–Resistant Construction Application Guide | 59