Hollow Column Uplift Connections

Install hollow column anchorage after the concrete pour, eliminating the need to determine the precise placement of the column during layout. Uplift loads are achieved with a concealed connection using a combination of Simpson Strong-Tie mechanical or adhesive anchors and threaded rod or coil strap.

Rod Configuration

This connection utilizes the Simpson Strong-Tie® Titen HD® rod coupler or SET-XP® epoxy anchoring adhesive for concrete anchorage. A coupler nut, threaded rod and bearing plate and nut complete the connection to the beam at the top of the column.

INSTALLATION

1. Select the appropriate rod and bearing plate from the table for the required uplift load.
2. Choose either the Titen HD rod coupler or SET-XP epoxy adhesive solution based upon desired performance characteristics.
3. Mark the slab for the center location of the column. Note: Refer to table below for minimum edge and end distance. Anchor must have minimum concrete cover of 2x anchor embedment opposite the edge and end slab terminus used for anchor location.
4. Drill the hole to the specified diameter and depth per requirements for the selected anchor (see table). Minimum concrete thickness shall be 1.5x embedment depth.
5. Install the selected anchor per the installation instructions on the product packaging (refer to the Simpson Strong-Tie® Anchoing, Fastening and Restoration Systems for Concrete and Masonry catalog or stronstie.com for additional installation information). Note: For SET-XP epoxy-based solutions, after the adhesive has fully cured, fully install the CNW coupler nut onto the epoxy-anchored threaded rod prior to installing the hollow column. Confirm that the anchored rod is visible in each Witness Holes of the CNW coupler nut prior to column installation.
6. Drop the appropriate length of threaded rod down the hollow column.
7. Install the beam, drill the appropriate diameter hole in the beam, and run the rod up through the beam. The Designer should be consulted for approval to drill through the beam.
8. Install the threaded rod into the CNW coupler nut or the threaded head of the Titen HD rod coupler.
9. Attach the rod to the top of the beam with a nut and the appropriate bearing plate chosen from the table.

Allowable Uplift Loads: Rod Configuration

<table>
<thead>
<tr>
<th>Threaded Rod Diameter (in.)</th>
<th>Anchor</th>
<th>Anchor Drill Bit Diameter (in.)</th>
<th>Minimum Embedment Depth (in.)</th>
<th>Minimum End Distance (in.)</th>
<th>Minimum Edge Distance (in.)</th>
<th>Bearing Plate Model No.</th>
<th>Coupler Nut Model No.</th>
<th>Allowable Uplift (lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>THD50934RC</td>
<td>1/2</td>
<td>16</td>
<td>13</td>
<td>4</td>
<td>BP1/2-3</td>
<td>CNW1/2</td>
<td>3,720</td>
</tr>
<tr>
<td>5/8</td>
<td>3/4 ATR</td>
<td>5/8</td>
<td>1/4</td>
<td>3</td>
<td>3</td>
<td>BP1/2-3</td>
<td>CNW1/2</td>
<td>3,285</td>
</tr>
<tr>
<td>3/4</td>
<td>5/8 ATR</td>
<td>3/4</td>
<td>3/4</td>
<td>4</td>
<td>4</td>
<td>BP4</td>
<td>CNW4</td>
<td>2,990</td>
</tr>
<tr>
<td>1/2</td>
<td>7/8 ATR</td>
<td>1/2</td>
<td>1/2</td>
<td>3</td>
<td>3</td>
<td>BP7/8</td>
<td>CNW3</td>
<td>2,390</td>
</tr>
<tr>
<td>1/2</td>
<td>1" ATR</td>
<td>1"</td>
<td>1"</td>
<td>9</td>
<td>9</td>
<td>BP1</td>
<td>CNW1</td>
<td>4,830</td>
</tr>
</tbody>
</table>

2. Allowable loads have been increased for wind loading with no further increase allowed.
3. Minimum concrete compressive strength is 2,500 psi.
4. 7/8" wrench size required.
5. Titen HD rod coupler includes coupler nut for 1/2"-diameter threaded rod.
6. System allowable load limited by perpendicular-to-grain wood-bearing (SPF = 425 psi, SPF = 565 psi, DF = 625 psi), rod tension or anchorage.
7. Anchor length must be at least 2" longer than embedment depth.
8. Designer may modify epoxy embedment depth and edge and end distances per the Anchoring, Fastening and Restoration Systems for Concrete and Masonry catalog.
9. Threaded rod shall be ASTM F1554 Grade 36, A36, or A307 (F = 58 ksi).
10. SET-XP® can be substituted for SET-XP per L-A-3GSUBXP19 found on stronstie.com.

Titen HD®

Heavy-Duty Screw Anchor

The Titen HD is a patented, high-strength screw anchor for concrete and masonry. The self-undercutting, non-expansion characteristics of the anchor make it ideal for structural applications, even at minimum edge distances and under reduced spacing conditions.

WARNING: Recommended for permanent dry, interior, non-corrosive environments, or provide a moisture barrier.

CODES: ICC-ES ESR-2713, City of L.A. RF 25741; Florida FL-15730.6

SET-XP®

High Strength Epoxy Adhesive

SET-XP® is a high-strength anchoring adhesive for threaded rod and rebar in cracked and uncracked concrete and masonry.

For more information about Simpson Strong-Tie® products, see the Anchoing, Fastening and Restoration Systems for Concrete and Masonry catalog or visit stronstie.com.

This technical bulletin provides allowable load values and solutions for anchors in connections between light-frame construction and concrete. The allowable load values for the post-installed anchor products are based on testing and/or finite element analysis (FEA) into uncracked concrete and the application of a safety factor of 4.0.

This guide is limited to the determination of potential connection solutions between light-frame construction and uncracked concrete in wind and low-seismic regions (any structure in seismic design categories A and B, and detached one- and two-family dwellings in seismic design category C). The use and determination of the applicability of the information presented in this guide to specific projects is the responsibility of the Designer and is subject to approval by the authority having jurisdiction.

© 2019 Simpson Strong-Tie Company Inc. T-C-COLUMN19
Hollow Column Uplift Connections

CMST Strap Configuration

This connection utilizes the Simpson Strong-Tie® Titen HD® heavy-duty screw anchor or SET-XP® epoxy-based anchoring adhesive for concrete anchorage. A holdown, machine bolts and a field-cut CMST strap complete the connection to the beam at the top of the column. The minimum inside diameter of the column must be 3¼” for the CMST strap and a minimum base opening diameter of approximately 7” is required for the HDB holdown. Consult the column manufacturer for minimum column opening diameters.

Installation

1. Select the appropriate holdown/anchor/strap combination from the table for the required uplift load.
2. Mark the slab for the center location of the column. **Note:** Refer to table below for minimum edge and end distance. Anchor must have minimum concrete cover of 2x anchor embedment opposite the edge and end slab terminus used for anchor location.
3. Drill the hole to the specified diameter and depth per requirements for the selected anchor (see table). Minimum concrete thickness shall be 1.5x embedment depth.
4. Install the holdown using the selected anchor, installing the anchor per the installation instructions on the product packaging. For additional installation information, reference the Simpson Strong-Tie® Anchoring, Fastening and Restoration Systems for Concrete and Masonry catalog or visit strongtie.com.
5. Cut the CMST strap to length so that:
 a) The strap can be installed to one face of the beam (as shown in the drawing) with Simpson Strong-Tie® Strong-Drive® SD screws as noted in the table below.
 b) The strap runs down the center of the column to connect with the holdown, leaving an additional 1 ½” of the strap below the bottom hole in the holdown.
6. Overlay the CMST strap with the back side of the holdown and mark the locations for the holdown bolt holes (maintaining the 1½” edge distance).
7. Drill the holes in the strap and attach it to the holdown using the strap bolts called out in the table (see table for drill bit and bolt size).
8. Set the column in place and fasten the CMST strap to the beam with #10 x 2½” SD screws as shown in the table. The center of the lowest fastener must be no less than ¾” from the bottom of the beam.

Allowable Uplift Loads: CMST Strap Configuration

<table>
<thead>
<tr>
<th>Holdown Model No.</th>
<th>Anchor</th>
<th>Anchor Drill Bit Diameter (in.)</th>
<th>Minimum Embedment Depth (in.)</th>
<th>Minimum End Distance (in.)</th>
<th>Minimum Edge Distance (in.)</th>
<th>Strap Model No.</th>
<th>Strap Bolts Qty.</th>
<th>Drill Bit Diameter (Strap) (in.)</th>
<th>Strap-to-Beam (in.)</th>
<th>Beam Depth Min. (in.)</th>
<th>Allowable Uplift (lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD3B</td>
<td>THDS01200H ¹ ½</td>
<td>10</td>
<td>4 ³⁄₄</td>
<td>11/₄</td>
<td>CMST14</td>
<td>2</td>
<td>3/₄</td>
<td>11/₄</td>
<td>(8) SD#10x2½”</td>
<td>7 ½</td>
<td>2,750</td>
</tr>
<tr>
<td>HD5B</td>
<td>TD051200H² ½</td>
<td>10</td>
<td>8</td>
<td>11/₄</td>
<td>CMST14</td>
<td>2</td>
<td>3/₄</td>
<td>11/₄</td>
<td>(10) SD#10x2½”</td>
<td>10</td>
<td>3,855</td>
</tr>
</tbody>
</table>

Titen HD® Anchorage

<table>
<thead>
<tr>
<th>Holdown Model No.</th>
<th>Anchor</th>
<th>Anchor Drill Bit Diameter (in.)</th>
<th>Minimum Embedment Depth (in.)</th>
<th>Minimum End Distance (in.)</th>
<th>Minimum Edge Distance (in.)</th>
<th>Strap Model No.</th>
<th>Strap Bolts Qty.</th>
<th>Drill Bit Diameter (Strap) (in.)</th>
<th>Strap-to-Beam (in.)</th>
<th>Beam Depth Min. (in.)</th>
<th>Allowable Uplift (lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD3B</td>
<td>½” ATR</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>CMST14</td>
<td>2</td>
<td>3/₄</td>
<td>11/₄</td>
<td>(8) SD#10x2½”</td>
<td>7 ½</td>
<td>2,750</td>
</tr>
<tr>
<td>HD5B</td>
<td>½” ATR</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>CMST14</td>
<td>2</td>
<td>3/₄</td>
<td>11/₄</td>
<td>(10) SD#10x2½”</td>
<td>10</td>
<td>3,940</td>
</tr>
</tbody>
</table>

SET-XP® Epoxy Anchorage

<table>
<thead>
<tr>
<th>Holdown Model No.</th>
<th>Anchor</th>
<th>Anchor Drill Bit Diameter (in.)</th>
<th>Minimum Embedment Depth (in.)</th>
<th>Minimum End Distance (in.)</th>
<th>Minimum Edge Distance (in.)</th>
<th>Strap Model No.</th>
<th>Strap Bolts Qty.</th>
<th>Drill Bit Diameter (Strap) (in.)</th>
<th>Strap-to-Beam (in.)</th>
<th>Beam Depth Min. (in.)</th>
<th>Allowable Uplift (lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD3B</td>
<td>½” ATR</td>
<td>9</td>
<td>4</td>
<td>4</td>
<td>CMST12</td>
<td>2</td>
<td>3/₄</td>
<td>11/₄</td>
<td>(16) SD#10x2½”</td>
<td>13</td>
<td>5,050</td>
</tr>
</tbody>
</table>

2. Allowable loads are based on DF/SP lumber and have been increased for wind loading with no further increase allowed. For SPF/HF, multiply table loads by 0.77.
3. Minimum concrete compressive strength is 2,500 psi.
4. ¾” wrench size required.
5. Anchor length must be at least 2” longer than embedment depth.
6. Threaded rod shall be ASTM F1554 Grade 5, A36, or A307 (F ₜ = 58 ksi).
7. Designer may modify epoxy embedment depth and edge and end distances per the Anchoring, Fastening and Restoration Systems for Concrete and Masonry catalog.
8. SET-XP® can be substituted for SET-XP per L-A-3GSSUBP19 found on strongtie.com.
9. Fasteners: SD1025 = #10 x 2½” Simpson Strong-Tie® Strong-Drive® Connector screw.

© 2019 Simpson Strong-Tie Company Inc. • P.O. Box 10789, Pleasanton, CA 94588
(800) 999-5099 strongtie.com

This technical bulletin is effective until December 31, 2021, and reflects information available as of May 1, 2019. This information is updated periodically and should not be relied upon after December 31, 2021.

Contact Simpson Strong-Tie for current information and limited warranty or see strongtie.com.