Load Path Installation Considerations

Hurricane Tie Installations to Achieve Twice the Load (Top View)
Both connectors shall be same model.

PROBLEM:
Connectors overlap when trusses and studs line up every 48”.

SOLUTION:
Specify TSP from stud to plate and from plate to truss.

(Strong-Drive® SDWC Truss screws may also be used. See pages 58–61 or contact Simpson Strong-Tie for more information.)
Building Floor-to-Floor Straps

PROBLEM:
All stud nails are filled before the roof is installed and the straps bow out when compression occurs.

SOLUTION 1:
Fill the nail holes in the rim joist area to limit the bowing.

SOLUTION 2:
Fill the nail holes to the top stud before the roof is installed and then fill bottom stud nails after. **Note:** Rim joist nails are not required.

SOLUTION 3:
Use DTT2Z tension ties.

SOLUTION 4:
Use Strong-Drive® SDWC TRUSS screws (SDWC15600) for plate-to-stud connections with Strong-Drive SDWF FLOOR-TO-FLOOR screw with TUW take-up washer for bottom-plate-to-top-plate connections. This allows for up to ¾” of shrinkage per floor. See pages 60–63.

Nailing over ½” maximum wood structural panel sheathing is acceptable provided minimum 2½” long nails are used.
Load Path Installation Considerations (cont.)

Mislocated Truss Anchors

PROBLEM:
Embedded truss anchors are mislocated more than \(\frac{1}{4} \)" and less than \(1\frac{1}{2} \)" from the face of the truss.

SOLUTION:
For mislocated embedded truss anchors that are greater than \(\frac{1}{8} \)" and less than \(1\frac{1}{2} \)" from the face of the truss, a shim must be placed between the strap and the truss. The shim should be designed by the Truss Engineer to properly transfer the loads to the connector. When anchors are more than \(1\frac{1}{2} \)" from the face of the truss, add new connectors as shown on page 21.

Cross-Grain Tension

PROBLEM:
Wood has very low tension capacity perpendicular to grain.

SOLUTION:
Avoid cross-grain tension by strapping stud to stud (see D133, page 52) or by mechanically reinforcing the lumber by overlapping MTS straps on rim board beyond centerline of rim board (as drawn).