ABSTRACT (September 25, 2008)
Bond Strength Testing of Six Self-Etch Adhesives on Both Enamel & Dentin
C. DE FURIA*, T. DUONG, R. PERRY, Tufts University School of Dental Medicine, Boston, MA, USA

OBJECTIVE: To evaluate bond strengths of six different self-etching adhesives in comparison to a 35% Phosphoric Acid etch when used on Enamel & Dentin.

METHOD: Seventy-five extracted multi-rooted teeth (premolars and molars) were collected and temporarily stored in 5% sodium azide solution for 24 hours. Thirty-five teeth were sectioned longitudinally to create two dentin slices resulting in two specimens from each tooth. Each sample was embedded in methyl-methacrylate with the buccal/lingual surfaces exposed so that a flat dentin surface could be obtained from wet-abrading with 600-grit SiC paper to create a standardized smear layer. Dentin samples were randomly divided into seven experimental groups (six self-etch adhesives and control). The other forty teeth were embedded in methyl-methacrylate upright, exposing the anatomical crowns which were wet-abraded to expose rough enamel. Initially, the forty enamel samples were randomly divided into four experimental groups and then were re-used after wet-abrasion and further randomly divided into the other 3 experimental groups:

Group 1 = Pentron
Group 2 = Adhese Pen
Group 3 = G-Bond
Group 4 = Adper L-Pop
Group 5 = Opti-Bond
Group 6 = Clearfil
Group 7 (control) = 35% Phosphoric Acid + Excite

Each enamel and dentin sample was roughened with wet-abrasion and the respective self-etch adhesive system was placed on each (according to each group’s manufacturer’s instructions). All samples had composite posts bonded to the adhesive using an Ultra-dent system. Each group was placed in a water bath of 37°C for 24 hours. Bond strength testing on each specimen was applied with an Instron machine, using a 5.0mm/min crosshead speed until the composite posts were debonded from each tooth.

RESULTS:

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
<th>Group 6</th>
<th>Group 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg Enamel Bond Strength</td>
<td>12.626</td>
<td>8.5499</td>
<td>15.9935</td>
<td>12.789</td>
<td>22.014</td>
<td>19.564</td>
<td>24.747</td>
</tr>
</tbody>
</table>

A one-way ANOVA analysis showed that Group 1 had the highest average bond strength in dentin while Group 5 had the highest average bond strength in enamel of self-etching adhesives. Group 1 resulted in a statistically significant difference (p<0.05) in dentin bond strength from the other self-etching adhesives. Group 5 resulted in a statistically significant difference (p<0.05) in enamel bond strength from the other self-etching adhesives, except for Group 6 (p>0.05).

CONCLUSION: Overall, some self-etching adhesives appeared to have clinical relevance for the use of bonding composites on both enamel and dentin. However, further testing of these newer adhesives are needed.
Detailed Results with Stats:

For Dentin:
- Pentron had $p<0.05$ (0.00, 0.01, 0.06, 0.021, 0.00) compared to Adhese, G-bond, L-pop, Opti-bond, Clearfil respectively BUT $p=0.179$ compared to Control
 - This represented that Pentron was the BEST self-etching adhesive in Dentin, even better than the control
 - Since there is a significant difference with all other self-etching adhesive, there really wasn’t a close 2nd in dentin bonding
- The worst was Adhese, but not to a statistically significant difference in dentin ($p>0.05$)
- For the most part, if you take out Pentron’s data, there was no statistically significant difference between any of the groups, including the control \rightarrow meaning they all produced about the same bond strength in dentin

For Enamel:
- Pentron had $p>0.05$ (0.713, 1.00, 1.00) compared to weak bonding enamel adhesives Adhese, G-bond, L-pop BUT $p<0.05$ compared to the good bonding enamel adhesives Opti-bond, Clearfil and Control
 - This represented that Pentron was in the bottom half of enamel bonding
- The best was Opti-bond with $p<0.05$ to all groups (4) except Clearfil
 - Clearfil was a close 2nd ($p<0.05$ to all groups (3) except Opti-bond & G-bond)
- The worst was Adhese again, but this time a statistically significant difference in enamel in a bad way (vs. G-bond $p=0.004$, Opti-bond $p=0$, Clearfil $p=0$)

Conclusion:
- If we have to bond to Dentin, we should only use Pentron
- If we have to bond to Enamel, we can use Opti-bond, Clearfil or the Control
- It appears that bonding to Enamel produces greater bond strengths than Dentin, with the exception being Pentron